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Abstract The phosphorescence decay under the effect of significant excited-state
absorption has a distinctive signature: it is initially concave, switching to convex (pure
exponential decay) after a certain time. A simple one-parameter decay function satis-
factorily reproducing the experimental decays is discussed, and some of its peculiar
mathematical properties analyzed.
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1 Introduction

The time evolution of the intensity of light spontaneously emitted by a sample after
excitation (usually optical) is called luminescence decay. This emission is recorded
for a narrow wavelength range, and results, in general, from a sum of weighted contri-
butions of several emitting species. The mathematical function describing the decay,
I (t), is called the decay law or decay function. For convenience, this function is usu-
ally normalized at t = 0. In favorable situations, the decay function follows from a
detailed model, but such a model is not always available and it may happen that an
empirical decay function embodies all that is known (at a certain stage) about the
luminescence kinetics of a particular system.

T. Palmeira · M. N. Berberan-Santos (B)
CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology,
Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
e-mail: berberan@tecnico.ulisboa.pt

123



2272 J Math Chem (2014) 52:2271–2276

The luminescence decay can always be written in the following form [1]:

I (t) =
∞∫

0

g(k)e−kt dk, (1)

with I (0) = 1. This relation is valid as I (t), understood here as a monotonic function
with a finite “light sum” (

∫ ∞
0 I (t)dt , proportional to the total number of light quanta

emitted) always has an inverse Laplace transform, g(k). The function g(k), also called
the eigenvalue spectrum, is normalized, as I (0) = 1 implies

∫ ∞
0 g(k)dk = 1. In many

situations the function g(k) is nonnegative for all k > 0, and g(k) can be regarded as
a distribution of rate constants (strictly, a probability density function) [1–3]. It was
previously shown [2] that this is always the case for completely monotonic functions,
i.e., functions for which

(−1)n I (n)(t) > 0 (n = 0, 1, 2, . . . .) . (2)

However, in a few cases the decay function does not comply with this definition
and the respective g(k) also takes negative values [2,3]. An even more extreme case is
disclosed here: A physically relevant and stricto sensu (i.e. monotonic) decay function
that nevertheless does not always have a computable inverse Laplace transform.

2 A decay function for phosphorescence reabsorption

Phosphorescence photons are usually emitted by molecules in the triplet state. If the
phosphorescence spectrum overlaps the triplet–triplet absorption spectrum of the same
substance, part of these photons are reabsorbed [4–6]. The effect can be significant
for high triplet concentrations. However, and following pulsed excitation, the triplet
concentration continuously decreases with time. In this way, the reabsorption prob-
ability decreases continuously and approaches zero for sufficiently long times. As a
consequence, the phosphorescence decay asymptotically approaches an exponential
function governed by the intrinsic phosphorescence lifetime, τP . This characteristic
trait of phosphorescence reabsorption leads to a unique type of decay with an initial
concave part [4,6] see Fig. 1.

A simple decay function that describes with very good accuracy experimental phos-
phorescence decays in the presence of excited-state absorption is

P(t) = 1

a + (1 − a) exp
(

t
τP

) , (3)

where P(t) is the phosphorescence intensity and a is a dimensionless parameter
accounting for reabsorption, 1 > a ≥ 0, see Fig. 2. For very small a, i.e. negligible
reabsorption, Eq. 3 reduces to an exponential decay. The same occurs for sufficiently
long times irrespective of the value of a.
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Fig. 1 Experimental phosphorescence decays of perdeuterated coronene in a polymer film at 77 K, in
the absence (1) and presence (2) of excited-state reabsorption. In the absence of reabsorption the decay
is exponential, with a lifetime of 29 s. In the presence of reabsorption, the decay displays a characteristic
initial concave part, but remains asymptotically exponential, with the intrinsic decay time (29 s)

Fig. 2 Phosphorescence decay function, Eq. 3. The value next to each curve is the respective a parameter.
The dashed line is formed by the loci of the inflection points ti , dividing the concave (t < ti ) and convex
(t > ti ) parts of the decay function

The fitting of Eq. 3 to an experimental phosphorescence decay with strong reab-
sorption (a = 0.88) is shown in Fig. 3. It is seen that the fit, although not perfect
(residuals plot deviates from white noise), is quite satisfactory, as the residuals are
very small. The general adequacy of the function was confirmed by fitting several
phosphorescence decays with various degrees of reabsorption (not shown).
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Fig. 3 Fitting of the phosphorescence decay function, Eq. 3 (black dash), to the phosphorescence decay (red
line) corresponding to curve 2 of Fig. 1, where strong reabsorption occurs. Fitted reabsorption parameter
by nonlinear least-squares was a = 0.88 (phosphorescence lifetime was fixed at the intrinsic value, 29 s)
(Color figure online)

3 Further mathematical properties of the phosphorescence decay function

The phosphorescence decay function Eq. 3 has an inflexion point at t
τP

= ln
(

a
1−a

)
for 1 > a > 1/2, where it takes the value P = 1/(2a) and switches from concave to
convex shape, see Fig. 2.

The decay function is well-behaved, in the sense that its integration over time is
finite [2,3],

∞∫

0

dt

a + (1 − a) exp
(

t
τP

) = τP

a
ln

(
1

1 − a

)
. (4)

This result is useful in cases where the phosphorescence decay is described by a sum
of terms of the type of Eq. 3, as it is necessary for the calculation of the respective
fractional contributions.

The decay function given by Eq. 3 cannot be represented by a distribution of rate
constants. Indeed, it is not a completely monotonic function of time, which is a nec-
essary condition, as mentioned in the Introduction. This can be shown explicitly by

rewriting Eq. 3 and performing a series expansion in powers of exp
(
− t

τP

)
:

P(t) = 1

1 − a

exp
(
− t

τP

)

1 + α exp
(
− t

τP

) = 1

1 − a

∞∑
n=1

(−α)n−1 exp

(
− nt

τP

)
, (5)
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Fig. 4 The amplitude spectrum for: a a = 0.2 and b a = 0.49

where α = a/(1−a). For a ≤ 0.1 the decay is well represented by the sum of the first
three exponentials, but no less than fifteen terms (exponentials) are already needed
when a = 0.4.

Termwise Laplace transform inversion of Eq. 5 yields, with k0 = 1/τp,

g(k) = 1

1 − a

∞∑
n=1

(−α)n−1δ (k − nk0) , (6)

where g(k) is the inverse Laplace transform of P(t), cf. Eq. 1.
It follows from Eq. 6 that g(k) is given by an alternating series of delta functions,

i.e., the rate constant spectrum is infinite and discrete, with monotonically decreasing
amplitudes, but alternating between positive and negative values, Fig. 4.

Nevertheless, this result holds only for a ≤ 0.5. For a > 0.5 the decay function
no longer has a computable inverse Laplace transform, as the series expansion, Eq. 5,

is convergent only after the inflection point, ti = τP ln
(

a
1−a

)
(the decay function is

concave for t < ti and convex afterwards).

For shorter times the decay is represented instead by a series in powers of exp
(

t
τP

)
,

P(t) = 1

1 + (1 − a)
(

e
t

τP − 1
) =

∞∑
n=0

[
−(1 − a)

(
e

t
τP − 1

)]n
, (7)
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which, in turn, is convergent for t
τP

< ln
(

2−a
1−a

)
. In this way, the two series are valid

in a common narrow interval, ln
(

a
1−a

)
< t

τP
< ln

(
2−a
1−a

)
.

Using an analytical inversion formula [7], it is possible to obtain a formal inverse
Laplace transform for the decay function, valid for any value of the a parameter,

g(k) = 2(1 − a)τP

π

∞∫

0

sin ω sin (kτPω) dω

a2 + 2a(1 − a) cos ω + (1 − a)2 a ∈ [0, 1[, (8)

however this representation does not appear to be amenable to numerical computation.

4 Conclusions

A simple one-parameter decay function satisfactorily reproducing phosphorescence
decays under the effect of excited-state absorption (triplet–triplet absorption) was
discussed, and some of its peculiar mathematical properties analyzed, including the
initial concavity and the inverse Laplace transform.
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